Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99.616
Filter
1.
Nat Commun ; 15(1): 3899, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724548

ABSTRACT

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Subject(s)
5-Methylcytosine , Adenosine , Sequence Analysis, RNA , Transcriptome , Adenosine/analogs & derivatives , Adenosine/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Humans , Methylation , Sequence Analysis, RNA/methods , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/metabolism , RNA/genetics
2.
Biochem Biophys Res Commun ; 715: 149937, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38701688

ABSTRACT

Localization of RNAs at specific subcellular locations regulating various local cellular events has gained much attention recently. Like most other classes of RNAs, the function of newly discovered circular RNAs (circRNAs) is predominantly determined by their association with different cellular factors in the cell. CircRNAs function as transcriptional and posttranscriptional regulators of gene expression by interacting with transcription factors, splicing regulators, RNA-binding proteins, and microRNAs or by translating into functional polypeptides. Hence, studying their subcellular localization to assess their function is essential. The discovery of more than a million circRNA and increasing evidence of their involvement in development and diseases require a thorough analysis of their subcellular localization linking to their biological functions. Here, we summarize current knowledge of circRNA localization in cells and extracellular vesicles, factors regulating their subcellular localization, and the implications of circRNA localization on their cellular functions. Given the discovery of many circRNAs in all life forms and their implications in pathophysiology, we discuss the challenges in studying circRNA localization and the opportunities for unlocking the mystery of circRNA functions.


Subject(s)
RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Animals , RNA/metabolism , RNA/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Gene Expression Regulation , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
3.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748013

ABSTRACT

Several enhanced sampling techniques rely on the definition of collective variables to effectively explore free energy landscapes. The existing variables that describe the progression along a reactive pathway offer an elegant solution but face a number of limitations. In this paper, we address these challenges by introducing a new path-like collective variable called the "deep-locally non-linear-embedding," which is inspired by principles of the locally linear embedding technique and is trained on a reactive trajectory. The variable mimics the ideal reaction coordinate by automatically generating a non-linear combination of features through a differentiable generalized autoencoder that combines a neural network with a continuous k-nearest neighbor selection. Among the key advantages of this method is its capability to automatically choose the metric for searching neighbors and to learn the path from state A to state B without the need to handpick landmarks a priori. We demonstrate the effectiveness of DeepLNE by showing that the progression along the path variable closely approximates the ideal reaction coordinate in toy models, such as the Müller-Brown potential and alanine dipeptide. Then, we use it in the molecular dynamics simulations of an RNA tetraloop, where we highlight its capability to accelerate transitions and estimate the free energy of folding.


Subject(s)
Deep Learning , Molecular Dynamics Simulation , RNA/chemistry , Thermodynamics , Dipeptides/chemistry
4.
Plant Mol Biol ; 114(3): 56, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743198

ABSTRACT

Most eukaryotic organisms employ a telomerase complex for the maintenance of chromosome ends. The core of this complex is composed of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) subunits. The TERT reverse transcriptase (RT) domain synthesises telomeric DNA using the TR template sequence. The other TERT domains contribute to this process in different ways. In particular, the TERT RNA-binding domain (TRBD) interacts with specific TR motif(s). Using a yeast 3-hybrid system, we show the critical role of Arabidopsis thaliana (At) TRBD and embryophyta-conserved KRxR motif in the unstructured linker preceding the TRBD domain for binding to the recently identified AtTR subunit. We also show the essential role of the predicted P4 stem and pseudoknot AtTR structures and provide evidence for the binding of AtTRBD to pseudoknot and KRxR motif stabilising interaction with the P4 stem structure. Our results thus provide the first insight into the core part of the plant telomerase complex.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Telomerase , Telomerase/genetics , Telomerase/metabolism , Telomerase/chemistry , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , RNA/metabolism , RNA/genetics , Two-Hybrid System Techniques , RNA, Plant/genetics , RNA, Plant/metabolism , Nucleic Acid Conformation , Protein Binding
5.
Nat Commun ; 15(1): 4049, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744925

ABSTRACT

Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for RNA modification identification. However, concurrently detecting multiple types of modifications in a single DRS sample remains a challenge. Here, we develop TandemMod, a transferable deep learning framework capable of detecting multiple types of RNA modifications in single DRS data. To train high-performance TandemMod models, we generate in vitro epitranscriptome datasets from cDNA libraries, containing thousands of transcripts labeled with various types of RNA modifications. We validate the performance of TandemMod on both in vitro transcripts and in vivo human cell lines, confirming its high accuracy for profiling m6A and m5C modification sites. Furthermore, we perform transfer learning for identifying other modifications such as m7G, Ψ, and inosine, significantly reducing training data size and running time without compromising performance. Finally, we apply TandemMod to identify 3 types of RNA modifications in rice grown in different environments, demonstrating its applicability across species and conditions. In summary, we provide a resource with ground-truth labels that can serve as benchmark datasets for nanopore-based modification identification methods, and TandemMod for identifying diverse RNA modifications using a single DRS sample.


Subject(s)
Oryza , Sequence Analysis, RNA , Humans , Sequence Analysis, RNA/methods , Oryza/genetics , RNA Processing, Post-Transcriptional , Nanopores , RNA/genetics , RNA/metabolism , Nanopore Sequencing/methods , Deep Learning , Inosine/metabolism , Inosine/genetics , Transcriptome/genetics
6.
J Am Chem Soc ; 146(19): 12919-12924, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691627

ABSTRACT

RNA is a key biochemical marker, yet its chemical instability and complex secondary structure hamper its integration into DNA nanotechnology-based sensing platforms. Relying on the denaturation of the native RNA structure using urea, we show that restructured DNA/RNA hybrids can readily be prepared at room temperature. Using solid-state nanopore sensing, we demonstrate that the structures of our DNA/RNA hybrids conform to the design at the single-molecule level. Employing this chemical annealing procedure, we mitigate RNA self-cleavage, enabling the direct detection of restructured RNA molecules for biosensing applications.


Subject(s)
DNA , Nanopores , RNA , RNA/chemistry , RNA/analysis , DNA/chemistry , Biosensing Techniques/methods , Nucleic Acid Conformation , Nucleic Acid Hybridization , Nanotechnology/methods , Urea/chemistry
7.
Elife ; 132024 May 13.
Article in English | MEDLINE | ID: mdl-38739430

ABSTRACT

A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.


All organisms, from animals to bacteria, are subject to genetic parasites, such as viruses and transposons. Genetic parasites are pieces of nucleic acids (DNA or RNA) that can use a cell's machinery to copy themselves at the expense of their hosts. This often leads to the host's demise, so organisms evolved many types of defense mechanisms. One of the most ancient and common forms of defense against viruses and transposons is the targeted restriction of nucleic acids, that is, deployment of host enzymes that can destroy or restrict nucleic acids containing specific sequence motifs or modifications. In bacteria, many of the restriction enzymes targeting parasitic genetic elements are formed by fusions of proteins from the so-called McrBC systems with a protein domain called EVE. EVE and other functionally similar domains are a part of proteins that recognize and bind modified bases in nucleic acids. Enzymes can use the ability of these specificity domains to bind modified bases to detect non-host nucleic acids. Bell et al. conducted a comprehensive computational search for McrBC systems and discovered a large and highly diverse branch of this family with unusual characteristic structural and functional domains. These features include regions that form long alpha-helices (coils) that coil with other alpha-helices (known as coiled-coils), as well as several distinct enzymatic domains that break down nucleic acids (known as nucleases). They call these systems CoCoNuTs (coiled-coiled nuclease tandems). All CoCoNuTs contain domains, including EVE-like ones, which are predicted to interact with components of the RNA-based systems responsible for producing proteins in the cell (translation), suggesting that the CoCoNuTs have an important impact on protein abundance and RNA metabolism. Bell et al.'s findings will be of interest to scientists working on prokaryotic immunity and virulence. Furthermore, similarities between CoCoNuTs and components of eukaryotic RNA-degrading systems suggest evolutionary connections between this diverse family of bacterial predicted RNA restriction systems and RNA regulatory pathways of eukaryotes. Further deciphering the mechanisms of CoCoNuTs could shed light on how certain pathways of RNA metabolism and regulation evolved, and how they may contribute to advances in biotechnology.


Subject(s)
RNA, Bacterial , RNA, Bacterial/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Phylogeny , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteria/genetics , Bacteria/metabolism , RNA/metabolism , RNA/genetics , RNA/chemistry
8.
Nat Commun ; 15(1): 3823, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714643

ABSTRACT

The CRISPR-Cas12a system is more advantageous than the widely used CRISPR-Cas9 system in terms of specificity and multiplexibility. However, its on-target editing efficiency is typically much lower than that of the CRISPR-Cas9 system. Here we improved its on-target editing efficiency by simply incorporating 2-aminoadenine (base Z, which alters canonical Watson-Crick base pairing) into the crRNA to increase the binding affinity between crRNA and its complementary DNA target. The resulting CRISPR-Cas12a (named zCRISPR-Cas12a thereafter) shows an on-target editing efficiency comparable to that of the CRISPR-Cas9 system but with much lower off-target effects than the CRISPR-Cas9 system in mammalian cells. In addition, zCRISPR-Cas12a can be used for precise gene knock-in and highly efficient multiplex genome editing. Overall, the zCRISPR-Cas12a system is superior to the CRISPR-Cas9 system, and our simple crRNA engineering strategy may be extended to other CRISPR-Cas family members as well as their derivatives.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Humans , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA/genetics , RNA/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , Bacterial Proteins , Endodeoxyribonucleases
9.
Sci Rep ; 14(1): 10316, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705876

ABSTRACT

Current approaches to diagnosing male infertility inadequately assess the complexity of the male gamete. Beyond the paternal haploid genome, spermatozoa also deliver coding and non-coding RNAs to the oocyte. While sperm-borne RNAs have demonstrated potential involvement in embryo development, the underlying mechanisms remain unclear. In this study, 47 sperm samples from normozoospermic males undergoing fertility treatment using donor oocytes were sequenced and analyzed to evaluate associations between sperm RNA elements (exon-sized sequences) and blastocyst progression. A total of 366 RNA elements (REs) were significantly associated with blastocyst rate (padj < 0.05), some of which were linked to genes related to critical developmental processes, including mitotic spindle formation and both ectoderm and mesoderm specification. Of note, 27 RE-associated RNAs are predicted targets of our previously reported list of developmentally significant miRNAs. Inverse RE-miRNA expression patterns were consistent with miRNA-mediated down-regulation. This study provides a comprehensive set of REs which differ by the patient's ability to produce blastocysts. This knowledge can be leveraged to improve clinical screening of male infertility and ultimately reduce time to pregnancy.


Subject(s)
Infertility, Male , MicroRNAs , Spermatozoa , Humans , Male , Infertility, Male/genetics , Spermatozoa/metabolism , MicroRNAs/genetics , Adult , Female , Blastocyst/metabolism , RNA/genetics , RNA/metabolism , Embryonic Development/genetics
10.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701751

ABSTRACT

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Subject(s)
Homeostasis , RNA, Nuclear , Animals , Mice , RNA, Nuclear/metabolism , RNA, Nuclear/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Cell Nucleus/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38701415

ABSTRACT

N4-acetylcytidine (ac4C) is a modification found in ribonucleic acid (RNA) related to diseases. Expensive and labor-intensive methods hindered the exploration of ac4C mechanisms and the development of specific anti-ac4C drugs. Therefore, an advanced prediction model for ac4C in RNA is urgently needed. Despite the construction of various prediction models, several limitations exist: (1) insufficient resolution at base level for ac4C sites; (2) lack of information on species other than Homo sapiens; (3) lack of information on RNA other than mRNA; and (4) lack of interpretation for each prediction. In light of these limitations, we have reconstructed the previous benchmark dataset and introduced a new dataset including balanced RNA sequences from multiple species and RNA types, while also providing base-level resolution for ac4C sites. Additionally, we have proposed a novel transformer-based architecture and pipeline for predicting ac4C sites, allowing for highly accurate predictions, visually interpretable results and no restrictions on the length of input RNA sequences. Statistically, our work has improved the accuracy of predicting specific ac4C sites in multiple species from less than 40% to around 85%, achieving a high AUC > 0.9. These results significantly surpass the performance of all existing models.


Subject(s)
Cytidine , Cytidine/analogs & derivatives , RNA , Cytidine/genetics , RNA/genetics , RNA/chemistry , Humans , Computational Biology/methods , Animals , Software , Algorithms
13.
PeerJ ; 12: e17071, 2024.
Article in English | MEDLINE | ID: mdl-38711623

ABSTRACT

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Subject(s)
Adipose Tissue , DNA , RNA , Animals , RNA/isolation & purification , RNA/genetics , Swine , DNA/isolation & purification , DNA/genetics , Adipose Tissue/metabolism
14.
J Med Virol ; 96(5): e29665, 2024 May.
Article in English | MEDLINE | ID: mdl-38738582

ABSTRACT

The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.


Subject(s)
Neoplasms , Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Neoplasms/virology , Neoplasms/genetics , Telomere/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Herpesvirus 4, Human/physiology , RNA/metabolism , RNA/genetics
15.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690966

ABSTRACT

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Subject(s)
Breast Neoplasms , Fluorescence Resonance Energy Transfer , Quantum Dots , RNA , Telomerase , Humans , Telomerase/metabolism , Telomerase/analysis , Quantum Dots/chemistry , RNA/metabolism , RNA/analysis , Female , Carbocyanines/chemistry , Biosensing Techniques/methods
16.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731616

ABSTRACT

PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) as the active sites of novel PNAzymes. An improved synthetic route for the 6-amino analogues is described. The catalytic activity of the chelating groups for cleaving phosphodiesters were assessed with the model substrate 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP), confirming that the zinc complexes have the reactivity order of parent < 2-methyl < 2-amino. The three ligands were conjugated to a PNA oligomer to form three PNAzymes which showed the same order of reactivity and some sensitivity to the size of the RNA bulge designed into the catalyst-substrate complex. This work demonstrates that the kinetic activity observed for the model substrate HPNPP could be translated onto the PNAzymes, but that more reactive Zn complexes are required for such PNAzymes to be viable therapeutic agents.


Subject(s)
Zinc , Zinc/chemistry , Peptide Nucleic Acids/chemistry , Chelating Agents/chemistry , RNA/chemistry , RNA/metabolism , Catalysis , Amines/chemistry , Kinetics , Organophosphates
17.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38697107

ABSTRACT

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Subject(s)
Immunotherapy , Tumor Microenvironment , Animals , Immunotherapy/methods , Mice , Dogs , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Cytokines/metabolism , Glioblastoma/therapy , Glioblastoma/immunology , Mice, Inbred C57BL , Female , Glioma/therapy , Glioma/immunology , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/metabolism , RNA/therapeutic use , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology
18.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732074

ABSTRACT

Early diagnosis of infections in young infants remains a clinical challenge. Young infants are particularly vulnerable to infection, and it is often difficult to clinically distinguish between bacterial and viral infections. Urinary tract infection (UTI) is the most common bacterial infection in young infants, and the incidence of associated bacteremia has decreased in the recent decades. Host RNA expression signatures have shown great promise for distinguishing bacterial from viral infections in young infants. This prospective study included 121 young infants admitted to four pediatric emergency care departments in the capital region of Denmark due to symptoms of infection. We collected whole blood samples and performed differential gene expression analysis. Further, we tested the classification performance of a two-gene host RNA expression signature approaching clinical implementation. Several genes were differentially expressed between young infants with UTI without bacteremia and viral infection. However, limited immunological response was detected in UTI without bacteremia compared to a more pronounced response in viral infection. The performance of the two-gene signature was limited, especially in cases of UTI without bloodstream involvement. Our results indicate a need for further investigation and consideration of UTI in young infants before implementing host RNA expression signatures in clinical practice.


Subject(s)
Urinary Tract Infections , Humans , Urinary Tract Infections/genetics , Infant , Prospective Studies , Female , Male , Transcriptome , Infant, Newborn , Gene Expression Profiling/methods , Bacteremia/genetics , RNA/genetics , Virus Diseases/genetics
19.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732083

ABSTRACT

Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.


Subject(s)
Circular Dichroism , DNA , Lysine , Peptides , Phenanthridines , Phenanthridines/chemistry , Lysine/chemistry , Peptides/chemistry , DNA/chemistry , DNA/metabolism , RNA/chemistry , Nucleic Acid Conformation
20.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732170

ABSTRACT

The aim of this Special Issue is to highlight significant and new aspects concerning the chemistry and biology of noncanonical nucleic acid structures, with emphasis on their structure, stability, and conformational equilibria, as well as on the biological relevance of their interactions with proteins and ligands [...].


Subject(s)
Nucleic Acid Conformation , Nucleic Acids , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Humans , Ligands , RNA/chemistry , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...